先進真空燒結生產線·精密檢測設備
應用廣泛 精度穩定 納污量大 自主研發
燒結網和燒結氈怎么選擇
1、比材質
燒結網的材質為同種或多種不銹鋼金屬編織網,而燒結氈的材質為不同絲徑的金屬纖維。
2、比燒結工藝
二者雖然都冠以燒結之名,但是在工藝上卻是不同的。**先是燒結的溫度,燒結網是在1260的條件下生產的,而燒結氈是1180。燒結網是按層數將不銹鋼金屬燒結網有序的疊放在一起,而燒結氈在結構上是雜亂無序的。
3、比納污量
由于材質和結構的差異性,燒結氈在生產的過程中會出現多種梯度的孔徑層,因此納污量要更大一些。
4、比清洗周期
在相同清洗條件下,二者的清洗周期是由納污量決定的。故而不銹鋼燒結網的清洗周期更短。
5、比盲孔率
上面的工藝介紹已經足以表明,不銹鋼燒結網的基本上是不存在盲孔的,而燒結氈或多或少會出現盲孔。
6、比過濾精度
不銹鋼燒結網的過濾精度為1—300μm,而燒結氈為5—80μm。
燒結氈除塵濾筒用氣泡法分析孔徑分布
氣泡法測量多孔材料的孔徑分布是一種簡單易行的方法,采用線性插值的方法解析氣泡所測得的流量與壓差曲線,可得到孔體積和孔數分布曲線。對不銹鋼纖維氈的測試結果表明,該方法解析得到的孔徑分布較真實地反映出金屬纖維氈的孔結構狀況,以孔體積分布峰值所對應的孔徑可近似確定這種過濾材料的過濾精度,其值偏差不超過±5.1%。
氣泡法的基本原理是利用對材料有良好浸潤性的液體介質(常用的有水、乙醇、異丙醇、四氯化碳等),先將樣品在液體介質中充分浸潤,然后再用另一種液體,如壓縮空氣將樣品的毛細孔中的液體推移出去。當氣體壓力由小逐漸增大到某一定值時,氣體將浸漬液體從毛細孔中推出而冒出一個氣泡,繼續加大壓力使浸漬了液體的孔道逐漸變為氣體的通路,氣體流量也隨之增加,冒出的泡越來越多,直到所有孔中的液體被排出。通過測量儀記錄下整個過程的流量與對應壓差的關系曲線,當流量與壓差關系由開始的曲線過渡到直線后,則表示全部貫通都已透過氣體,這時為孔徑分布檢測的終點。
燒結氈上料機的工藝
低硫原料配入法
燒結氈上料機氣中的SO2的來源主要是鐵礦石中的FeS2或FeS、燃料中的S(有機硫、FeS2或FeS)與氧反應產生的,一般認為S 生成SO2的比率可以達到85%~95%. 因此,在確定燒結原料方案時,適當地選擇配入含硫低的原料,從源頭實現對SO2排放量的控制,是一種簡單易行有效的措施。
該法因對原料含硫要求嚴格,使其來源受到了一定的,燒結礦的生產成本也會隨著低硫原料的價格上漲而增加。就原料短缺的現狀來看, 此法難以全面推廣應用。
高煙囪稀釋排放
燒結氈上料機氣中SO2的質量濃度一般在1000~3000 mg/m3且煙氣量大,若回收在經濟上投資較大,故大多數國家仍以高煙囪排放為主,如美國煙囪**高達360m.
我國包鋼燒結廠采用低含硫原料、燃料,燒結煙氣經200m高煙囪排放,SO2**大落地質量濃度在0. 017mg/m3以下。寶鋼的燒結廠采用200 m高煙囪稀釋排放。這種方法簡單易行,又比較經濟。從長遠來看,高煙囪排放僅是一個過渡。但在當時條件下,采用高煙囪稀釋排放作為控制SO2 污染的手段是正確的。
煙氣脫硫法
低硫原料配入法和高煙囪排放簡單易行,又較經濟。但我國SO2的控制是排放濃度和排放總量雙重控制,因此,為根本消除SO2污染,煙氣脫硫技術在燒結廠的應用勢在必行。
煙氣脫硫是控制燒結煙氣中SO2污染**有效的方法。世界上研發的煙氣脫硫技術有200多種,進入大規模商業應用的只有10余種,我國也先后引進了不同的脫硫裝置主要用于火電廠,而國內用于燒結煙氣脫硫的技術進展較慢。國內僅有幾個小燒結上了脫硫設施。如廣鋼2臺24平燒結機采用雙堿法工藝,臨汾鋼廠利用燒結煙氣處理焦化廢水等,因脫硫設施或多或少存在一些問題,所以運行也不正常。
燒結氈折疊濾芯的還原性和再生性
燒結氈折疊濾芯是一種具備**的過濾性能的高精度、耐腐蝕和耐高溫的過濾材料。在燒結氈中,它的納污容量更大,并在使用中壓力上升更慢,而更換的周期也更長。同時燒結氈的壓力損失更小,并具備優良的滲透率和高孔隙率,通過焊接加工可以增加過濾的面積。
燒結氈折疊濾芯在使用中,其生產成本相對其他過濾材料而言也是比較高的。為節約降耗,同時也為了有利于環境保護,針對燒結氈有利還原再生的條件,可以進行再生處理。在還原再生過程中要全面考慮濾芯工作狀態,過濾系統污染物類型及清洗程序。燒結氈的清洗方法有熱處理清洗、化學清洗以及超聲波三種清洗方式。化學清洗是**常用的也是**廣泛和有效的清洗溶劑為酸堿清洗液。化學清洗法是針對收集聚脂凝結物過濾器常用的效果**好的清洗方法。
燒結氈折疊濾芯采用的超聲波清洗則是一種連續加工和膨脹的加工方式。采用這種加工方式效率更高,通用性更強。而無論燒結氈采用哪種清洗的方式,都需要在清洗后進行完整性檢查
燒結溫度對纖維燒結氈的影響
燒結工藝是影響金屬纖維燒結氈微結構的一個關鍵過程,而燒結溫度是金屬纖維燒結氈工藝**重要的參數,本文以6 μm纖維氈為例進行分析。6 μm纖維氈在這3種溫度下都有明顯的燒結頸,但是在3種溫度下纖維燒結氈展現了3種不同的形貌。a是6 μm纖維在1 200 ℃燒結后形成的燒結頸,上下2根垂直的纖維在相切處形成燒結頸,且燒結氈的直徑大于纖維直徑,但是2根纖維沒有熔合的趨勢;當燒結溫度為1 250 ℃時,2根垂直纖維的燒結氈直徑比1 200 ℃時更大,且燒結氈附近處纖維有熔合的趨勢,這反映了燒結氈處形成的新晶界通過晶界擴散同時向上下2根纖維推進,且燒結氈附近纖維直徑有所收縮,這可能是因為隨著燒結溫度的升高,金屬原子沿著纖維長度方向擴散至燒結氈處,導致纖維直徑收縮,而1 200 ℃的纖維燒結氈沒有此現象;當燒結溫度為1 300 ℃時,燒結氈附近的纖維有明顯的融合,這是由于燒結溫度繼續升高,晶界擴散更快,燒結氈附近纖維中物質擴散到新晶粒中,從而熔合在一起,此時燒結氈處纖維也有比較明顯的收縮,6 μm纖維氈在1 300 ℃時無熔斷。
纖維燒結氈搭接點的焊接是通過擴散進行的。燒結初期,相互接觸的纖維搭接點逐漸形成燒結氈的連接,此時搭接點是不連續的,且有大量孔隙,擴散的主要機制是表面擴散;燒結中期,燒結氈的孔隙逐漸消失,燒結氈逐漸形成晶界,此時擴散的主要機制是晶界擴散;燒結后期,燒結氈附近晶粒開始長大,此時晶粒長大體擴散是主要機制。擴散的實質是原子的熱運動,溫度顯著影響著原子擴散速度,對于表面擴散來說,只有當燒結溫度足以使纖維表面原子的熱運動克服表面能壘時,才能形成燒結氈,因此纖維燒結氈應超過一定溫度。同樣,燒結溫度影響著纖維原子晶界擴散的速度,燒結溫度越高晶界擴散速度越快,纖維燒結氈速度越快;但是過高的燒結溫度會使纖維出現晶粒過大、絲徑收縮和過熔等缺陷,這是纖維燒結氈工藝需要避免的。