先進真空燒結生產線·精密檢測設備
應用廣泛 精度穩定 納污量大 自主研發
燒結溫度對纖維燒結氈的影響
燒結工藝是影響金屬纖維燒結氈微結構的一個關鍵過程,而燒結溫度是金屬纖維燒結氈工藝**重要的參數,本文以6 μm纖維氈為例進行分析。6 μm纖維氈在這3種溫度下都有明顯的燒結頸,但是在3種溫度下纖維燒結氈展現了3種不同的形貌。a是6 μm纖維在1 200 ℃燒結后形成的燒結頸,上下2根垂直的纖維在相切處形成燒結頸,且燒結氈的直徑大于纖維直徑,但是2根纖維沒有熔合的趨勢;當燒結溫度為1 250 ℃時,2根垂直纖維的燒結氈直徑比1 200 ℃時更大,且燒結氈附近處纖維有熔合的趨勢,這反映了燒結氈處形成的新晶界通過晶界擴散同時向上下2根纖維推進,且燒結氈附近纖維直徑有所收縮,這可能是因為隨著燒結溫度的升高,金屬原子沿著纖維長度方向擴散至燒結氈處,導致纖維直徑收縮,而1 200 ℃的纖維燒結氈沒有此現象;當燒結溫度為1 300 ℃時,燒結氈附近的纖維有明顯的融合,這是由于燒結溫度繼續升高,晶界擴散更快,燒結氈附近纖維中物質擴散到新晶粒中,從而熔合在一起,此時燒結氈處纖維也有比較明顯的收縮,6 μm纖維氈在1 300 ℃時無熔斷。
纖維燒結氈搭接點的焊接是通過擴散進行的。燒結初期,相互接觸的纖維搭接點逐漸形成燒結氈的連接,此時搭接點是不連續的,且有大量孔隙,擴散的主要機制是表面擴散;燒結中期,燒結氈的孔隙逐漸消失,燒結氈逐漸形成晶界,此時擴散的主要機制是晶界擴散;燒結后期,燒結氈附近晶粒開始長大,此時晶粒長大體擴散是主要機制。擴散的實質是原子的熱運動,溫度顯著影響著原子擴散速度,對于表面擴散來說,只有當燒結溫度足以使纖維表面原子的熱運動克服表面能壘時,才能形成燒結氈,因此纖維燒結氈應超過一定溫度。同樣,燒結溫度影響著纖維原子晶界擴散的速度,燒結溫度越高晶界擴散速度越快,纖維燒結氈速度越快;但是過高的燒結溫度會使纖維出現晶粒過大、絲徑收縮和過熔等缺陷,這是纖維燒結氈工藝需要避免的。
金屬纖維燒結氈的燒結工藝
金屬纖維燒結氈是采用直徑到達微米級的金屬纖維絲像無紡布那樣鋪棉、按照必定配比經高溫真空燒結爐里燒結而成。不銹鋼燒結氈能夠代替金屬絲網簡單阻塞、簡單破損的弊端,也能夠代替粉末過濾產品強度差、流量小的缺點。
金屬纖維燒結氈具有一般濾紙、濾布不能相媲美的耐溫、耐壓的特點,因此不銹鋼金屬燒結氈是理想的耐高溫、高精度的過濾資料咱們出產的金屬纖維燒結氈質料可以做成金屬折疊熔體濾芯、金屬纖維燒結氈耐高溫金屬濾袋等產品。不銹鋼燒結濾芯是以不銹鋼粉末為質料。
通過高溫燒制而成的過濾芯,過濾精度高可達5um,滲透性好,機械強度高,適用于較高溫度和有腐蝕性的環境。用于水處理、食品、石油、化工、冶金工業,防塵防塵等。性能指標:精度規模:5-100um;耐溫:400℃;易清洗,可再生,強度高,可加工,可焊接,孔隙均勻,可用于物料分布,可在各種酸堿環境下正常穩定使用。
銅燒結濾芯:銅粉末燒結濾芯是由銅粉末,裝入加工好的模具里,經高溫燒制而成形。銅粉末的顆粒巨細在20-300目之間,不同直徑巨細的銅粉末構成的銅濾芯孔隙巨細不一樣,對應的精度在3-100微米,目數越大,精度越小。孔道縱橫交錯,耐高溫、抗急冷急熱。抗腐蝕。適用于多種酸、堿等腐蝕性介質。
金屬纖維燒結氈生產工藝制造
●金屬纖維濾氈的性能:85%的高孔隙率可保證濾材通過大流量,足夠長的在線壽命和非常低的壓力降,從而比選用其他濾材的過濾面積小。
●燒結金屬纖維濾氈的多孔結構使得用戶可以在機上進行在線反吹或反沖洗。
●薄膜型的濾材容易折波和焊接。燒結過程中纖維的交聯處被熔焊在一起使濾材具有高強度,加之足夠大的內部空間,濾材可以承受熱沖擊、高壓力以及頻繁地反向脈沖清洗。
●不同合金材質的金屬纖維濾材可以被用于高溫,甚至高達1000℃的高腐蝕工況,其他材質如化纖或陶瓷等非金屬織物無法與之相比。
●濾材的梯度型孔結構可以達到更高的效率。作為深度型過濾時,正向安裝時具有足夠高的納污能力;作為表面型過濾時,反向安裝形成濾餅可以進行在線反洗。
●不繡鋼和其他的合金具有熱膨脹性低、不脆、易焊接、受熱沖擊不變形的特點,可以選擇合適的合金來滿足強度和苛刻的工況需求。
●在應用深度過濾時,建議以選擇多層結構,以增加納污能力。
●燒結金屬纖維濾氈生產出許多形狀和系列:燭芯式濾芯(折波或不折波)、碟片式濾盤。當需要高壓精細熔體過濾時,用燒結有雙面職稱網的金屬纖維濾材加工的濾盤替代濾芯過濾效果會更好。
燒結氈上料機的工藝
低硫原料配入法
燒結氈上料機氣中的SO2的來源主要是鐵礦石中的FeS2或FeS、燃料中的S(有機硫、FeS2或FeS)與氧反應產生的,一般認為S 生成SO2的比率可以達到85%~95%. 因此,在確定燒結原料方案時,適當地選擇配入含硫低的原料,從源頭實現對SO2排放量的控制,是一種簡單易行有效的措施。
該法因對原料含硫要求嚴格,使其來源受到了一定的,燒結礦的生產成本也會隨著低硫原料的價格上漲而增加。就原料短缺的現狀來看, 此法難以全面推廣應用。
高煙囪稀釋排放
燒結氈上料機氣中SO2的質量濃度一般在1000~3000 mg/m3且煙氣量大,若回收在經濟上投資較大,故大多數國家仍以高煙囪排放為主,如美國煙囪**高達360m.
我國包鋼燒結廠采用低含硫原料、燃料,燒結煙氣經200m高煙囪排放,SO2**大落地質量濃度在0. 017mg/m3以下。寶鋼的燒結廠采用200 m高煙囪稀釋排放。這種方法簡單易行,又比較經濟。從長遠來看,高煙囪排放僅是一個過渡。但在當時條件下,采用高煙囪稀釋排放作為控制SO2 污染的手段是正確的。
煙氣脫硫法
低硫原料配入法和高煙囪排放簡單易行,又較經濟。但我國SO2的控制是排放濃度和排放總量雙重控制,因此,為根本消除SO2污染,煙氣脫硫技術在燒結廠的應用勢在必行。
煙氣脫硫是控制燒結煙氣中SO2污染**有效的方法。世界上研發的煙氣脫硫技術有200多種,進入大規模商業應用的只有10余種,我國也先后引進了不同的脫硫裝置主要用于火電廠,而國內用于燒結煙氣脫硫的技術進展較慢。國內僅有幾個小燒結上了脫硫設施。如廣鋼2臺24平燒結機采用雙堿法工藝,臨汾鋼廠利用燒結煙氣處理焦化廢水等,因脫硫設施或多或少存在一些問題,所以運行也不正常。
纖維絲徑對纖維燒結氈的影響
當燒結溫度一定時,纖維絲徑對纖維搭接點形貌的影響較大,本文以1 250 ℃為例進行分析。由上述分析可知,在1 250 ℃溫度下,4 μm纖維在燒結頸處完全熔合在一起,6 μm纖維在燒結頸處部分熔合,8 μm纖維燒結頸未發生熔合且燒結頸直徑大于纖維絲徑,12 μm纖維燒結頸直徑小于纖維絲徑,22 μm纖維氈燒結頸直徑較小,且在電鏡檢測燒結頸時不易發現,只在纖維某些特殊位置才能發現。另外,在同等條件下,纖維絲徑越細,燒結速度越快。
纖維絲徑對纖維燒結氈的影響主要有以下2個方面:1)纖維絲徑越細,纖維的比表面積越大,纖維表面原子的表面能壘越低,且原子擴散距離減小,同等條件下細絲徑纖維率**行表面擴散,并完成燒結的3個過程,粗絲徑纖維燒結速度則較慢,甚至纖維搭接點還沒有完成表面擴散;2)由于金屬纖維特殊的生產工藝,細絲徑的金屬纖維儲存了更多的形變能,當燒結進入到中后期主要發生晶界擴散和體擴散,此時形變能將作為燒結驅動力提高晶界擴散和體擴散的速度,絲徑為4和6 μm纖維氈由于沿長方向的原子擴散,燒結頸附近纖維開始出現收縮的現象。
金屬纖維燒結氈作為一種過濾材料,在燒結之前,其纖維隨機排列,相互接觸,此時纖維燒結氈還不是一個整體,纖維之間無法保持一定的孔結構;經過燒結后,纖維燒結氈就具備了一定的強度和結構。纖維搭接點的擴散焊接對纖維燒結氈的性能有著很大的影響,如纖維過熔,將影響纖維氈的平均孔徑,甚至出現漏點。纖維燒結氈的狀態將影響纖維氈的韌性和強度,纖維燒結氈后的晶粒大小將影響纖維燒結氈的耐蝕性能等。